Job Aid 3: Diagnostic Uncertainty ^{1507v2}

The medical utility of laboratory tests is limited by variation arising from any source, including biological variation as well as analytical variation (measurement error).

 μ = uncertainty, U = expanded uncertainty = k * μ using a k = 2 for approximately 95% confidence and k=3 for approximately 99% confidence X ± 2 μ includes a true value of X with approximately 95% confidence; between the values (X-2 μ , X+2 μ) = (X-U, X+U)

At a level near X, MU is \pm U; (95% CI = X-U to X+U) The number of significant digits given for a MU should be the same as that used for reported results. X \pm 3 μ includes the true value with approximately 99% level of confidence.

Reference change values (RCVs) - Determines whether the difference between two results is negligible due to uncertainty or significant due to a genuine change in the condition of the patient.

RCV in % > 2.77 * (%CV Analytical) at a 95% Confidence Level

RCV in units > 2.77 * (sd Analytical) = 2.77 ([%CV Analytical * test result]/100%) = 2.77 ([μ % * test result]/100%)

If biological variation (CV₁)is known, then RCV $_{in \%}$ > 2.77 *V (%CV²_{Analytical} + %CV²_I) at a 95% Confidence Level

%CV Analytical = % μ sd Analytical = $\mu_{in units}$ sd Analytical = (%CV Analytical * mean)/ 100%

• If the method has a quantitation step, such as an absorbance value for determining a cutoff, measurement of uncertainty must be calculated.

•When calculating combined uncertainties for parameters that are calculated using addition and subtraction e.g. Anion gap, the SD or μ value can be used.

•Similarly when calculating combined uncertainties for parameters that are calculated using division and multiplication e.g. creatinine clearance, the sd or μ must first be converted to %CV.